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1. Experiment shows El] that the majority of physical, chemical and other
properties of a solid body vary under the effects of high pressure. The theory
_of the condensed state, taking the parameters of the external high pressure into
account in succession, has still not been developed within the scope of quantum
mechanics nor even in classical thermodynamics. Meanwhile, consideration of the
high pressure parameter in thermodynamic relations can give such dependences of
certain properties of the solid on the high pressure as would differ essentially
from the same dependences at atmospheric pressure. Consequently, it is of interest
to investigate the influence of high pressure on the basis of ordinary thermo-
dynamics and statistics; for example, the influence on the spectrum of the thermal
oscillations of the atoms or ions, the coefficient of thermal broadening and
compressibility of the crystal lattice.

2., Let us considér, as the first problem, the influence of high pressure on
the spectrum of the elastic atom-oscillations of a linear, monatomic chain of a
solid, PFirst of all, the influence of compression causes a decrease in the inter-
atomic distance for which the magnitude can be represented by an expansion in

powers of a certain small parameter ¢p :

(1) alp) = a_ + alxp + % aé’énp)z + ...

where a(p) and a, are the interatomic distance at the pressure p and at
atmospheric, respectively; 3¢ 1is the linear compressibility. Inasmuch as the

the product 3¢ p is known to be small up to very high pressures (p 'zflo5 555 )
cm
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because of the smallness of the compressibility (?¢~ 107 kg~ -cmz), then, as it
is easy to show, the expansion (1), having been limited to the first two terms,
can be reduced to:

(1a) a(f)x a (1 - |x,|1)

Here f = p.?LO"l5 is the external pressure in dynes per atomic chain (10'15 cm2

is the area of the cross-section of the atomic chain); %f is the chain compress-

6 -5 -1

ibility. For example, 7¢~10-0-10"5 kgl.cm® for p ~10" kg-am 2 [1]3

¢ 3

g to 10h per dyne and xff~1o'2 .

=-%;§§§f-)-. >.10° = 10
In order to make possible the approximate qualitative comparison of the
theoretical results on determining the intrinsic oscillation spectrum of a linear
chain under high pressure with experimental results, it is necessary to know the
form of the potential of the interaction between the atoms. On the basis of

[2,3:[ for very high pressures, which are of interest, the greatest variation in
the potential energy is specified by the variation of the energy arising during
the overlapping of the undeformed electron shells of the ions. It can be shown

by analogy with [3] that the ion interaction potential in a chain which takes into
account both the electrostatic repulsion and the overlapping of the electron shells

will have the form:

(2) U(r) = e"F(4 + Br + cre + Dr-l)
where, according to [3], A ~3-10" erg; B ~0.7.107 erg.ant ;
c~o.1.207 erg«cm'2 ; D~ 13=10"11 ergecm 3 r is the interatomic spacing

in atomic units; ¥ = 2.9 atomic units.
The maximum frequency of the elastic oscillations of a linear chain com-
pressed by f dynes equals:

(3) 1 al(f
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where m is the mass of the atom; a(f) is the elastic coupling coefficient of

the atoms in the chain which equals:

2
! (£) = L[oXr) U(r)]
W) : 2[ ar® |r —>a(f)

Substituting (2) into (L) and neglecting small terms, we obtain:
(5) a(f) ~a(l+ I'xflf) exp(va |2 |£)

where a, is the elastic coupling coefficient at atmospheric pressure.

Since the Debye temperature is determined according to the formula

& = —= , then we find from (3) and (5):

(6) o(£) = 8 (1 + |a|£) exp(37a|%,]1)

where 6(f) and 90 are the Debye temperature at the pressure f and at atmos-
pheric pressure, respe étively.

The existence of the exponential factor in (6) leads to a sharp increase in
the Debye temperature as the external pressure increases. This is specified by
a sharp increase in the energy because of the overlapping of the electron shells
as the ions approach under the action of the high pressure, which leads to a
decrease in the amplitude of their oscillations and, therefore, to an increase
in frequency.

The exponential term in (6) can be expanded into series for small values of
the I%If parameter. This yields:

(6a) 8(£) = 6 (1 + d|u|1)

where d =1 +%a_ . According to (6), we obtain, respectively, for

3, 10L‘, 10° kg.om 2 and Y = 2.9 atomic units: ©(f) = 1.0034, 1.03L, and

p =10
1.3&90 (see sketch)., The variation of the compressibility with the pressure is

not taken into account in (6). When this variation is taken into account, the



b.
growth of ©(f) as the pressure increases will be slower than is shown, qualit-

atively on the sketch by the dashed line.

|

| p 3. The maximum frequency of the
: | Z4 o)

/ elastic oscillations of ions of a three-
]ol-z dimensional crystal lattice of cubical

_} W/‘ symmetry at the pressure p is determined,
i | }ZJ o as is known, by the expression:
-t -- - -4 -3
«1g3f 3N vzvg -"-
Dependence of Dgzggszireuperatm'e on (7 vmax(p) = %W T__g:l

1 - without considering 31

d |7c| df

daf

2 - considering where 3N is the number of atoms in the

crystal lattice; V(p) is the crystal

volumes Ve and v, are the propagation velocities, respectively, of the transverse

and longitudinal elastic oscillations in the crystal . Considering Ve

to be equal in the case of an isotropic cubical crystal and using (1a) and also

and A

the obvious condition:

v(p) = V(1 - [K[p)
where K is the magnitude of the volume campressibility which equals ~ 39¢;
v, is the initial volume, we obtain an expression for the dependence of the

Debye temperature on high pressure:

(8) USSR SO
o =0 —=v
RRLCINETVINE St A
Formula (8) becomes, for small values of [3|p :
(8a) 8(p)= ©,(1 + gbelp)

where g = —]2'-(3 + ’Yao) . Since the parameter g 1is essentially a positive quantity,
then from (8) and (8a) there follows that ©(p) increases as the external pressure

increases.
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On the basis of (8a), the coefficient of Debye temperature variation with

pressure equals:

1 de(p) 1 dx
9 o’-___Lg 1 _)
(9) 5 gl * T3 & P

According to [1]:

5 2

1 dx kgL on

W ® P

Oh

consequently, the increase in o, for example for p = 1 1<:g-¢:,m"'2 , is several

percent but the growth of o will be very significant for p = 10° kgeom 2 .
i. Let us use the formulas obtained to derive a dependence of the linear

coefficient of the thermal expansion of a solid &(f) on high pressure. As is

known [4], &(f) for atomic chains taking the anharmonicity of elastic oscill-

ations into account can be represented thus:

af o\

(10) 5(f) = _.E.\.i_’_i;-_
a(f) a®(£)
1 83U .
where B(f) = Zl=— is the coefficient of anharmonic coupling of the
ar” |r —»a(f)

atoms in the chain; k is the Boltzmann constant. Substituting (1a), (2) and
(5) in (10), we obtain:

(11) 8(£) = 8 (1 - 2]9%11‘) exp(-Ta,|%|f)

where 50 is the coefficient of linear expansion of the atomic chain at atmos-
pheric pressure. Again we have for small l%flf

(11a) 5(£) e 6 (1 - |c| [361£) |
where c = 2 +‘Vao is substantially a positive quantity for values of a, and 7
taken. From (11) and (1la) there follows that the linear coefficient of thermal
expansion of a solid decreases as the pressure increases, which agrees with
experiment, qualitatively, for all known metals [1].

The variation of the thermal expansion coefficient with pressure equals, on
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the basis of (11a) without taking into account the compressibility variation with

increased pressure:

(12) F EF - - eyl

0
The negative sign on the right side of (12) indicates a decrease in &(f) as
the pressure increases.
January, 1955
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